iSpreadRank: Ranking sentences for extraction-based summarization using feature weight propagation in the sentence similarity network

نویسندگان

  • Jen-Yuan Yeh
  • Hao-Ren Ke
  • Wei-Pang Yang
چکیده

Sentence extraction is a widely adopted text summarization technique where the most important sentences are extracted from document(s) and presented as a summary. The first step towards sentence extraction is to rank sentences in order of importance as in the summary. This paper proposes a novel graph-based ranking method, iSpreadRank, to perform this task. iSpreadRank models a set of topic-related documents into a sentence similarity network. Based on such a network model, iSpreadRank exploits the spreading activation theory to formulate a general concept from social network analysis: the importance of a node in a network (i.e., a sentence in this paper) is determined not only by the number of nodes to which it connects, but also by the importance of its connected nodes. The algorithm recursively re-weights the importance of sentences by spreading their sentence-specific feature scores throughout the network to adjust the importance of other sentences. Consequently, a ranking of sentences indicating the relative importance of sentences is reasoned. This paper also develops an approach to produce a generic extractive summary according to the inferred sentence ranking. The proposed summarization method is evaluated using the DUC 2004 data set, and found to perform well. Experimental results show that the proposed method obtains a ROUGE-1 score of 0.38068, which represents a slight difference of 0.00156, when compared with the best participant in the DUC 2004 evaluation. 2007 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Document Summarization Retrieval System Based on Web User Needs

Existing models for document summarization mostly use the similarity between sentences in the document to extract the most salient sentences. The documents as well as the sentences are indexed using traditional term indexing measures, which do not take the context into consideration. Therefore, the sentence similarity values remain independent of the context. In this paper, we propose a context...

متن کامل

مقایسه روش‌های مختلف یادگیری ماشین در خلاصه‌سازی استخراجی گفتار به گفتار فارسی بدون استفاده از رونوشت

In this paper, extractive speech summarization using different machine learning algorithms was investigated. The task of Speech summarization deals with extracting important and salient segments from speech in order to access, search, extract and browse speech files easier and in a less costly manner. In this paper, a new method for speech summarization without using automatic speech recognitio...

متن کامل

Sentence Annotation based Enhanced Semantic Summary Generation from Multiple Documents

Problem statement: The goal of document summarization is to provide a summary or outline of manifold documents with reduction in time. Sentence extraction could be a technique that is employed to pick out relevant and vital sentences from documents and presented as a summary. So there is a need to develop more meaningful sentence selection strategy so as to extract most significant sentences. A...

متن کامل

SentTopic-MultiRank: a Novel Ranking Model for Multi-Document Summarization

Extractive multi-document summarization is mostly treated as a sentence ranking problem. Existing graph-based ranking methods for key-sentence extraction usually attempt to compute a global importance score for each sentence under a single relation. Motivated by the fact that both documents and sentences can be presented by a mixture of semantic topics detected by Latent Dirichlet Allocation (L...

متن کامل

Summarization of Historical Articles Using Temporal Event Clustering

In this paper, we investigate the use of temporal information for improving extractive summarization of historical articles. Our method clusters sentences based on their timestamps and temporal similarity. Each resulting cluster is assigned an importance score which can then be used as a weight in traditional sentence ranking techniques. Temporal importance weighting offers consistent improveme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2008